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Entropy for SU(3)c quark states
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Abstract. We discuss the quantum state structure using the standard model for three colored quarks in the
fundamental representations of SU(3)c making up the singlet ground state of the hadrons. This allows us
to calculate a finite von Neumann entropy from the quantum reduced density matrix, which we explicitly
evaluate for the quarks in a model for the meson and baryon states.

The well-known heat theorem of Nernst, which is often
referred to as the Third Law of Thermodynamics, has the
generally accepted interpretation in the theory of gases
that the entropy vanishes in the zero temperature limit.
Schrödinger [1] had pointed out long ago that when two
states contribute to the ground state of a many particle
system that a finite constant term could appear in the en-
tropy. In particular, for a system with 2N states making
up the ground state of a system of N particles one should
expect a ground state entropy of N ln 2. We can now un-
derstand his result in terms of the SU(2) symmetry for
the N particles. In this sense we should expect an internal
symmetry provided by the quantum structure to yield an
entropy following the prescription of von Neumann [2].

The standard model has the color charge carried by the
quarks as the fundamental property of the strong nuclear
interaction [3]. In clear contrast to the other known charges
the color charge cannot be easily isolated and separately
measured. In nature it always appears as part of selective
states of the SU(3)c, wherein the quarks and antiquarks
are placed in the fundamental 3 and antifundamental 3∗
representations of this group. These two representations
together with the adjoint representation of SU(3)c make
up the symmetry structure of quantum chromodynamics
(QCD) [4]. The two main categories of strong interacting
particles (hadrons) are the mesons, which may be written
as a product of the fundamental and the antifundamental
representations 3⊗3∗ and the baryons, which are a product
of three fundamental representations3⊗3⊗3. Although the
different quarks have other properties like spin, electrical
charge and mass, as well as a very special property called
flavor, we shall not presently go into these aspects here [3].

In this work we shall write the quark and antiquark
color states as follows: |0〉,|1〉,|2〉 and |0∗〉,|1∗〉,|2∗〉. We shall
use this notation to describe the orthonormal bases of the
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fundamental and the antifundamental representations of
SU(3)c instead of the more common color names. From
these color states we can construct a representation for
the color hadronic wavefunctions – in particular for the
singlet meson ΨM,s and baryon ΨB,s groundstates. We also
mention the construction for the eight density matrices for
the color octet states of the mesons and baryons. From
these color wavefunctions we are able to construct the cor-
responding density matrices ρM,s and ρB,s for the color
singlet states [5]. In the following work we shall arrive at
the single quark reduced density matrix ρq, which is of
particular interest in all further calculations. From ρq we
can directly calculate the quantum entropy in the sense of
von Neumann [2, 5]. The results of this calculation show
a significant contribution of order one to the entropy of
the quarks in the hadronic singlet and octet states. This
value is given as a pure number without physical dimen-
sions when we use the usual high energy units with �, c
and Boltzmann’s constant k all set to the value one.

The starting point for the ground state is the evaluation
of the density matrix [5] for the singlet quark structure.
Here we only consider the color part of the wavefunctions
ΨM,s and Ψ∗

M,s coming from the representation 3⊗3∗ for
the color singlet wavefunctions of the mesons,

ΨM,s =
1√
3
(|00∗〉 + |11∗〉 + |22∗〉), (1)

and keeping the left to right order of the quark and anti-
quark for its conjugate wavefunction,

Ψ∗
M,s =

1√
3
(〈00∗| + 〈11∗| + 〈22∗|). (2)

Similarly we may write a wavefunction for the baryons
ΨB,s coming from the representation 3⊗3⊗3 for the color
singlet state of the baryons,

ΨB,s =
1√
6
(|012〉 + |120〉 + |201〉 − |021〉
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−|102〉 − |210〉). (3)

The conjugate state wavefunction in the order of the tensor
product for the baryons is given by

Ψ∗
B,s =

1√
6
(〈012| + 〈120| + 〈201| − 〈021|

−〈102| − 〈210|). (4)

We can now write down the density matrices ρ for the
hadrons using the direct product of Ψ and Ψ∗. This gives for
the color singlet mesons and baryons the density matrices
in the following forms:

ρM,s = ΨM,sΨ
∗
M,s (5)

and
ρB,s = ΨB,sΨ

∗
B,s. (6)

Until now we have only considered the hadronic states as
being made out of the quark and antiquark states. The re-
sulting density matrices are for the hadrons pure states [5].
However, for the quarks we look at the single quark reduced
density matrices, which give the statistical state of the indi-
vidual quark within the hadron. In order to get the reduced
density matrices for the mesons, we project out all the an-
tiquark states 〈i∗| and |j∗〉 by using the orthonormality
and the completeness properties. Similarly for the baryons
we project onto the other two quark states resulting in
two contributions for each color. Thus the meson and the
baryon reduced density matrices for the quark states take
on the same form:

ρq =
1
3
(|0〉〈0| + |1〉〈1| + |2〉〈2|). (7)

This is the reduced density matrix for the quarks in the
color singlet state. It yields a completely mixed state where
each color contribution has the same eigenvalue λi equal
to the value 1/3. The reduced density matrices can also be
calculated for each quark state in the octet representations.
A more detailed discussion will appear in a later work.

We can calculate the entropy S of the quantum states
using the prescription of von Neumann [2,5], which makes
direct use of the density matrix ρ. It is simply written as

S = −Tr(ρln ρ), (8)

where the trace “Tr” is taken over the quantum states.
When, as is presently the case, the eigenvectors are known
for ρ, we may write this form of the entropy in terms of
the sum of the eigenvalues λi as follows:

S = −
∑

i

λilnλi. (9)

It is obviously important to have positive eigenvalues. For
a zero eigenvalue we use the fact that xlnx vanishes in the
small x limit. Then for the density matrix ρ we may inter-
pret λi as the probabilitiy of the state i or pi. This meaning

demands that 0 < pi ≤ 1. Thus the orthonormality condi-
tion for the given states results in the trace condition

Trρ =
∑

i

pi = 1. (10)

This is a very important condition for the entropy.
We now apply these definitions to the entropy for the

quark states. It is clear that the original hadron states
are pure colorless states which possess zero entropy. For
the meson it is immediately obvious since each colored
quark state has the opposing colored antiquark state for
the resulting colorless singlet state. The sum of all the
cycles determine the colorlessness of thebaryon singlet state
thereby giving no entropy. However, the reduced density
matrix for the individual quarks (antiquarks) ρq or ρq̄ has
a finite entropy. For SU(3)c all the eigenvalues λi from ρq

have the same value 1/3. Thus we find for all the quarks
(antiquarks) in singlet states

Sq = ln 3. (11)

As a further point we may draw a qualitative comparison
of this result for the singlet state with the entropies of the
quark octet states. The octet density matrices ρo,i may
be constructed from the eight Gell-Mann matrices (λ)i

with i = 1, 2, . . . , 8. The density matrix for each state is
constructed by using the properties of Ψ(λ)iΨ

∗. From the
reduced density matrix, the first seven of these all give the
same value ln 2 for the entropy So,i, since all of these states
are constructed only from the Pauli matrices. However, the
eighth diagonal Gell-Mann matrix yields a larger entropy
So,8 from the fact that it involves all three colors although
not with equal weights as it was the case for the color
singlet state.

Hereupon, we may discuss the entropy in some more de-
tail for the main examples of the colorless hadronic ground
states – the mesons and the baryons. As we have discussed
above for the density matrix, all the mesons consist of a
quark–antiquark pair bound together as a sum of all the
three colors. Since each single quark or antiquark state is
equally weighted in the reduced density matrix, each state
posesses equal probability of 1/3. Thus we easily get the
entropy of ln 3. The baryon has the doubly reduced den-
sity matrix for each single quark state appearing twice so
that with the normalization factor of 1/6 the probability of
each colored quark state is again 1/3, which yields the same
result for the entropy, ln 3. This value gives the maximal
entropy for a completely mixed state. We know that the
singlet and the octet states make up a major contribution
to all the hadronic states.

It is the colored quark entropy density which physically
distinguishes the thermodynamics of the baryons from the
mesons. If we use the generally accepted values for the root
mean squared charge radius of the hadrons [3], we take for
the mesons (pions)

√〈r2
M 〉 as 0.66 ± 0.02 fm, while for the

baryons (protons) [6] we use for
√〈r2

B〉 the value 0.870 ±
0.008 fm.These values of the charge radii are smallwhenput
on the nuclear size scale, where we would generally expect
sizes well over 1 fm. These mean charge radii give spherical
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charge volumes for the mesons ranging from 1.098 fm3 to
1.317 fm3 or about 1.20 fm3 as the average mean volume.
Similarly for the baryons we find an average mean volume
of 2.76 fm3. The mean entropy density of the quarks in the
singlet ground state of the mesons (pions) is given by

sM =
ln 3

1.20 fm3 = 0.912
1

fm3 . (12)

Similarly for the baryons in the singlet ground state we
arrive at a mean value for the entropy density

sB =
ln 3

2.76 fm3 = 0.398
1

fm3 . (13)

These entropy densities represent the most probable dis-
tributions of quarks in the given volume for the charged
portions of the hadrons.

As a last remark in this work on the meaning of this
type of entropy for the quantum ground state we should
note that the effects of this type appear in other systems
with internal symmetries. In quantum spin chains [7] the
effects of the ground state entanglement show strong cor-
relations in a block of L spins giving entropies proportional
to the logarithm of the size L in the various special cases
of the quantum Heisenberg model. These results are then
related to the entropy in a (1 + 1)-dimensional conformal
field theory. Furthermore, one could, perhaps, extend these
results to a three state model like the Z(3) symmetric spin
models or the extended Potts models [8] to find analogous
properties for the entropy in the low temperature limit.

We have calculated the entropy for a single quark in
the color singlet ground state of the hadrons. We saw that
the singlet state is a completely mixed state with the max-
imum value of the entropy given by ln 3. In the theory of
information it is known that the completely mixed state
is that of minimal information, which is consistent with the

idea of confinement. If we were to consider a system of N
quarks or antiquarks in a gas of hadrons in the same sense
that Schrödinger [1] considered a gas of N degenerate two
level constituents, we would generally expect an entropy
of the form N ln 3 for the uncolored singlet ground state.
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